# A tibble: 3,195 × 32
id name state census_region pop_dens pop_dens4 pop_dens6 pct_black pop
<chr> <chr> <fct> <fct> <fct> <fct> <fct> <fct> <int>
1 0 <NA> <NA> <NA> [ 50,… [ 45, 1… [ 82, 2… [10.0,15… 3.19e8
2 01000 1 AL South [ 50,… [ 45, 1… [ 82, 2… [25.0,50… 4.85e6
3 01001 Auta… AL South [ 50,… [ 45, 1… [ 82, 2… [15.0,25… 5.54e4
4 01003 Bald… AL South [ 100,… [118,716… [ 82, 2… [ 5.0,10… 2.00e5
5 01005 Barb… AL South [ 10,… [ 17, … [ 25, … [25.0,50… 2.69e4
6 01007 Bibb… AL South [ 10,… [ 17, … [ 25, … [15.0,25… 2.25e4
7 01009 Blou… AL South [ 50,… [ 45, 1… [ 82, 2… [ 0.0, 2… 5.77e4
8 01011 Bull… AL South [ 10,… [ 17, … [ 9, … [50.0,85… 1.08e4
9 01013 Butl… AL South [ 10,… [ 17, … [ 25, … [25.0,50… 2.03e4
10 01015 Calh… AL South [ 100,… [118,716… [ 82, 2… [15.0,25… 1.16e5
# ℹ 3,185 more rows
# ℹ 23 more variables: female <dbl>, white <dbl>, black <dbl>,
# travel_time <dbl>, land_area <dbl>, hh_income <int>, su_gun4 <fct>,
# su_gun6 <fct>, fips <dbl>, votes_dem_2016 <int>, votes_gop_2016 <int>,
# total_votes_2016 <int>, per_dem_2016 <dbl>, per_gop_2016 <dbl>,
# diff_2016 <int>, per_dem_2012 <dbl>, per_gop_2012 <dbl>, diff_2012 <int>,
# winner <chr>, partywinner16 <chr>, winner12 <chr>, partywinner12 <chr>, …